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1. BEHAVIOR OF LAGRANGE AND HERMITE INTERPOLATION

ON THE ROOTS OF LEGENDRE POLYNOMIALS

It is well known that the Lagrange interpolation procedure cannot be
uniformly convergent for all continuous functions no matter what matrix of
nodes of interpolation is chosen. However, L. Fejer [6] proved that for
certain special matrices, the Hermite-Fejer interpolation parabolas H if) of
any continuous function f on [-1,1] converge uniformly to f on [-1,1];
e.g., the matrix T, the nth row of which consists of the n roots of Tn(x) (the
Tchebycheff polynomial of degree n) displays this property. Fejer also
proved that H n(f) based on the roots of the Legendre polynomials converges
uniformly to f in each closed subinterval of (-I, I). Furthermore, for the
endpoints ± I he showed that

l~~ Hn[f, ±1] =! (/(X)dX.

For further details in this direction we refer to the interesting work of
Szabados [Ill.

2. SOME INTERPOLATORY PROCESSES

Let us denote by

-1 = Xn < Xn _I < .. , < X2< XI = 1
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(2.1 )
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the n distinct zeros of (l-x2)Pn_2(x), where Pn(x) is the Legendre
polynomial of degree n with the normalization

We set

(2.2)

and

I ( ) _ Pn _ 2(x)
k X - (x - xd P~-2(Xk)'

1 +X 2
h)(x) = -2- Pn_2(x),

k = 2, 3,... , n - 1, (2.3)

(2.4 )

2<.k<.n-l. (2.5)

Letfbe a continuous function on [-1,1]. We consider the following inter­
polation processes based on the roots (2.1):

and

n

An[f,x] = L f(xk)hk(x)
k=)

(2.6)

n n-l

Bn[f,x] = L f(xk)hk(x) + L ,u~(xk)ak(x), (2.7)
k=) k=2

where ,un(x) is an algebraic polynomial of degree <.n satisfying

(2.8)

w 2(f, (5) is the modulus of smoothness of order 2 off Inequanlity (2.8) is an
important result due to DeVore [3].

The polynomials An [f] were first constructed by Egervary and Turan [41
as the solution of the problem of most economial process.

The polynomials Bn[f] were initiated by Fejer [7] and Szasz [12]. It is
easy to see that

and

640/31/3-4

An[f, Xi] =!(xi),

A~[f, Xi] = 0,

B~[f,xJ =,u~(xJ,

i = 1,2,... , n,

i = 2, 3,... , n - 1,

i = 1,2,... , n,

i = 2, 3,..., n - 1.

(2.9)

(2.10)
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3. MAIN TESULT

Concerning An[j] and Bn[f] we shall prove the pointwise estimates in the
form of the following theorem.

THEOREM 3.1. LetfE C[-1, 1] thenfor -1 ~x~ 1 we have

n

IAn[f,x]-f(x)l~cln-l L w(f,~/i) (3.1)
i=!

and

(3.2)

where C1 and Cz are positive constants independent off, nand x.

Inequality (3.1) is analogous to the results of Bojanic [2] and Vertesi
[14]. Inequality (3.2) is analogous to a recent theorem of DeVore [3]. We
note that B n If, x] is also interpolatory.

4. PRELIMINARIES

We need some known facts about Legendre polynomials. From [4] we
have

n-!

L hk(x) == 1 - P~_z(x) ~ 1.
k=2

According to Bernstein [1],

(l - X Z)1/4IPn _ z(x)1 ~V2/n(n - 2),

(4.1 )

(4.2)

From a theorem of Erdos [5] it follows that there exists a c3 > 0
(independent of n and x) such that for -1 ~ x ~ 1,

k = 2, 3,..., n - 1. (4.3)

Recalling the definition of xk = cos Ok we obtain

1-xZ>(k-Dzn-z, k=2,3,... ,[(n-2)/2], (4.4)

and

k = 2, 3,..., [(n - 2)/2]. (4.5)
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We note that a similar estimate holds for k = l(n - 2)/2] + 1,... , n - 1. On
combining (4.4) and (4.5) it follows that

( 1 - x Z
)

3/4 IP' (x)1 ~ c n l/Z
k n-Z k ?' 5 ,

From (4.2) and (4.7) it follows that

We also see that

k = 2, 3,... , n - 1. (4.6)

(4.7)

5. SOME LEMMAS

(4.9)

Throughout this paper we assume xj to be that zero of Pn _ z(x) which is
nearest to x. Using the definition of Xj and (4.4) it follows that for some
c, > 0 independent of n and x,

k=j ± r, r = 1,2,..., n - 3. (5.1)

We now prove the following lemmas.

LEMMA 5.1. For -1 ~ x ~ 1 we have

If(l) - f(x)1 hl(x) ~ csw(v'!=7/n),

If(-I) - f(x)1 hn(x) ~ c9 w(v'!=7/n)

and

n - I n 1 (r sin ())
II == t-z If(xk) - f(x)\ hk(x) ~ ClO~1 -;:rw -n- ,

where w(<5) == w(I, <5).

(5.2)

(5.3)

(5.4)
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Proof. For x = ± 1 (5.2) holds trivially. On using the properties of
modulus of continuity of1 we have for -1 <x < 1,

1/(1) - l(x)1 hl(x) ~ hl(x) w(1 - x)

~ (1 + n%f) hl(x)w(~)

= (1 n~) (1 +X) 2 () (VT=7)+.~ 2 Pn - 2 x w
yl+x n

~(l +nVT=7)P~_2(X)W (~)

~ (1 + n VT=7P~_Z<x))w (~).

On using (4.2) we obtain (5.2). Proof of (5.3) can be obtained along the
same lines. Now we again note that for X= ±1 (5.4) follows obviously. For
-1 <x < 1, we divide the sum I according to the definition of xj as given
above. We write

II = L Iflxk) - l(x)1 hk(x) + I/(xj) - l(x)1 hix). (5.5)
k*j

Again, making use of the properties of modulus of continuity of1 we obtain

II~ L w(lx-xkl) hk(x) +hjw(lx-xjl)
k*j

2<:;k=j±r<;n-1

~ f;j (1 + n ~~: ~kl) w Cs~n e) hk(x)

2<;k=j±r<;n-1

(
n1x-xjl)h.() (Sine)+1+ 'e JXw .sm n

Further we note that

and

(5.6)

(5.7)

k=j ± r, k*j. (5.8)

First we shall prove (5.7). From (4.3) and (4.1) it follows that



Hence for -1 ~x~ 1,.
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k = 2, 3,..., n - 1. (5.10)

Thus on using (4.7) and (5.10) we obtain

nix - x I h (x) = n(I _ 2)1/2 [(1 - X2)1/41Ik(X)I] [ (1 - x
2
)1/

4
I Pn_2(X)1 ]

k k x (1 _ XDI/4 (1 - XD3/4IP~_2(Xk)1

~ n( 1 - X2)1/2C¥2C6 n- I

~ clI (1-X 2)112.

This completes the proof of (5.7) for -1 ~ x ~ 1 and k = 2, 3,..., n - 1. In
order to prove (5.8) we use (5.1) and (4.8) and observe that for k *j,

(1 - x2)1/41Ik(x)1
(1 - XDI/4

(1 - X2)1/4!Pn_2(x)1

= (1 - XD3/4IP~_2(Xk)1

k=j ± r, k*j.

Now we can see that (5.8) follows from (5.11) and (4.7) as follows:

k=j ± r, k*j.

From an earlier result of [8, Lemma 2, p. 277] (also [9, p. 128]),

(5.11)

k = j ± r, -1 ~ x ~ 1. (5.12)

Thus from (5.6), (5.7), (5.8) and (5.12) we immediately obtain

n 1 (r sin 0)
I)~CIO L 7: w -- .

r=) r n

This completes the proof of Lemma 5.1.
For the proof of the inequality (3.2) we need the following lemma.
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LEMMA 5.2. For -1 ~ x ~ 1 we have

(5.13)

Proof Due to the properties of modulus of continuity of order 2 of f(x)
and (4.1) it follows that for -1 <x < 1,

n -1 (vT=XI) (/l-=7)12 ~ L hk(x) 1 + /l-=7 W 2
k=2 I-x n

(/l-=7) 1 n-I /l-=7 I
~ W 2 ;; 1 + k'5;2 n1Z(X) \.

Now on using (5.10) and (5.11) we obtain

(5.14)

For x=±1 (5.13) is trivially satisfied. Hence from (5.14) Lemma 5.2
follows.

6. THE PROOF OF THEOREM 3.1.

From (4.1) and (2.6) if follows that

An[f, x]- f(x) = [f(1) - f(x)] hl(x) + [f(-I) - f(x)] hn(x)
n-I

+ L [f(xk) - f(x)] hk(x).
k=2

On using Lemma 5.1 we at once obtain

(6.1 )

(/l-=7) n 1 (r sin fJ)
IAn[f,x]-f(x)1 ~ (CS +C9)W +C10 L -yW -- .

n r=1 r n

Now following the same lines as in [10] we get

,,"., ~ (r sin 8) C I6 f (/l-=7)2... 2 W ~ ....... w.,
r= 1 r n n i= 1 I
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This completes the proof of inequality (3.1).
Next, we shall prove (3.2). It is well known that if/(x) is a polynomial of

degree <,2n - 3 (with P~(Xk) =1'(xk)) then

Since Pn(x) is a polynomial of degree <,n we can write

n n-1

Pn(x) = L Pn(xk) hk(x) + L P~(Xk) ak(X),
k=1 k=Z

Now from (2.7), (2.8), (5.13) and (6.2) it follows that

IB n[f, x] - l(x)1

<, IBn [f, x] - Pn(x)1 + IPn(x) - l(x)1

n-1

<, Co L W z(V l - x~/n) hk(x) + Cowz(y!1=X2/n)
k=Z

<, (CIS + 1) Cowz(y!1=X2/n)

<, Czwz(y!1=X2/n)

which completes the proof of Theorem 3.1.
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