A Study of Some Interpolatory Processes Based on the Roots of Legendre Polynomials

J. Prasad
Department of Mathematics, California State University, Los Angeles, California 90032

AND

A. K. Varma

Department of Mathematics, University of Florida, Gainesville, Florida 32611
Communicated by R. Bojanic
Received February 15, 1980

1. Behavior of Lagrange and Hermite Interpolation on the Roots of Legendre Polynomials

It is well known that the Lagrange interpolation procedure cannot be uniformly convergent for all continuous functions no matter what matrix of nodes of interpolation is chosen. However, L. Fejér [6] proved that for certain special matrices, the Hermite-Fejer interpolation parabolas $H_{n}(f)$ of any continuous function f on $[-1,1]$ converge uniformly to f on $[-1,1]$; e.g., the matrix T, the nth row of which consists of the n roots of $T_{n}(x)$ (the Tchebycheff polynomial of degree n) displays this property. Fejer also proved that $H_{n}(f)$ based on the roots of the Legendre polynomials converges uniformly to f in each closed subinterval of $(-1,1)$. Furthermore, for the endpoints ± 1 he showed that

$$
\lim _{n \rightarrow \infty} H_{n}[f, \pm 1]=\frac{1}{2} \int_{-1}^{1} f(x) d x
$$

For further details in this direction we refer to the interesting work of Szabadös [11].

2. Some Interpolatory Processes

Let us denote by

$$
\begin{gather*}
-1=x_{n}<x_{n-1}<\cdots<x_{2}<x_{1}=1 \tag{2.1}\\
244
\end{gather*}
$$

the n distinct zeros of $\left(1-x^{2}\right) P_{n-2}(x)$, where $P_{n}(x)$ is the Legendre polynomial of degree n with the normalization

$$
\begin{equation*}
P_{n}(1)=1 \tag{2.2}
\end{equation*}
$$

We set

$$
\begin{align*}
& l_{k}(x)=\frac{P_{n-2}(x)}{\left(x-x_{k}\right) P_{n-2}^{\prime}\left(x_{k}\right)}, \quad k=2,3, \ldots, n-1, \tag{2.3}\\
& h_{1}(x)=\frac{1+x}{2} P_{n-2}^{2}(x), \quad h_{n}(x)=\frac{1-x}{2} P_{n-2}^{2}(x), \tag{2.4}
\end{align*}
$$

and
$h_{k}(x)=\frac{1-x^{2}}{1-x_{k}^{2}} l_{k}^{2}(x), \quad \sigma_{k}(x)=\left(x-x_{k}\right) h_{k}(x), \quad 2 \leqslant k \leqslant n-1$,
Let f be a continuous function on $[-1,1]$. We consider the following interpolation processes based on the roots (2.1):

$$
\begin{equation*}
A_{n}[f, x]=\sum_{k=1}^{n} f\left(x_{k}\right) h_{k}(x) \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
B_{n}[f, x]=\sum_{k=1}^{n} f\left(x_{k}\right) h_{k}(x)+\sum_{k=2}^{n-1} \mu_{n}^{\prime}\left(x_{k}\right) \sigma_{k}(x) \tag{2.7}
\end{equation*}
$$

where $\mu_{n}(x)$ is an algebraic polynomial of degree $\leqslant n$ satisfying

$$
\begin{equation*}
\left|f(x)-\mu_{n}(x)\right| \leqslant c_{0} \omega_{2}\left(f, \sqrt{1-x^{2}} / n\right) \tag{2.8}
\end{equation*}
$$

$\omega_{2}(f, \delta)$ is the modulus of smoothness of order 2 of f. Inequanlity (2.8) is an important result due to DeVore [3].

The polynomials $A_{n}[f]$ were first constructed by Egervary and Turán [4] as the solution of the problem of most economial process.

The polynomials $B_{n}[f]$ were initiated by Fejér [7] and Szász [12]. It is easy to see that

$$
\begin{array}{ll}
A_{n}\left[f, x_{i}\right]=f\left(x_{i}\right), & i=1,2, \ldots, n \\
A_{n}^{\prime}\left[f, x_{i}\right]=0, & i=2,3, \ldots, n-1 \tag{2.9}
\end{array}
$$

and

$$
\begin{array}{ll}
B_{n}\left[f, x_{i}\right]=f\left(x_{i}\right), & i=1,2, \ldots, n \tag{2.10}\\
B_{n}^{\prime}\left[f, x_{i}\right]=\mu_{n}^{\prime}\left(x_{i}\right), & i=2,3, \ldots, n-1
\end{array}
$$

3. Main Tesult

Concerning $A_{n}[f]$ and $B_{n}[f]$ we shall prove the pointwise estimates in the form of the following theorem.

Theorem 3.1. Let $f \in C[-1,1]$ then for $-1 \leqslant x \leqslant 1$ we have

$$
\begin{equation*}
\left|A_{n}[f, x]-f(x)\right| \leqslant c_{1} n^{-1} \sum_{i=1}^{n} \omega\left(f, \sqrt{1-x^{2}} / i\right) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|B_{n}[f, x]-f(x)\right| \leqslant c_{2} \omega_{2}\left(f, \sqrt{1-x^{2}} / n\right) \tag{3.2}
\end{equation*}
$$

where c_{1} and c_{2} are positive constants independent of f, n and x.
Inequality (3.1) is analogous to the results of Bojanic [2] and Vertesi [14]. Inequality (3.2) is analogous to a recent theorem of DeVore [3]. We note that $B_{n}[f, x]$ is also interpolatory.

4. Preliminaries

We need some known facts about Legendre polynomials. From [4] we have

$$
\begin{equation*}
\sum_{k=2}^{n-1} h_{k}(x) \equiv 1-P_{n-2}^{2}(x) \leqslant 1 \tag{4.1}
\end{equation*}
$$

According to Bernstein [1],

$$
\begin{equation*}
\left(1-x^{2}\right)^{1 / 4}\left|P_{n-2}(x)\right| \leqslant \sqrt{2 / \pi(n-2)}, \quad n \geqslant 4 \tag{4.2}
\end{equation*}
$$

From a theorem of Erdös [5] it follows that there exists a $c_{3}>0$ (independent of n and x) such that for $-1 \leqslant x \leqslant 1$,

$$
\begin{equation*}
\left|l_{k}(x)\right| \leqslant c_{3}, \quad k=2,3, \ldots, n-1 \tag{4.3}
\end{equation*}
$$

Recalling the definition of $x_{k}=\cos \theta_{k}$ we obtain

$$
\begin{equation*}
1-x_{k}^{2}>\left(k-\frac{3}{2}\right)^{2} n^{-2}, \quad k=2,3, \ldots,[(n-2) / 2] \tag{4.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|P_{n-2}^{\prime}\left(x_{k}\right)\right|>c_{4}\left(k-\frac{3}{2}\right)^{-3 / 2} n^{2}, \quad k=2,3, \ldots,[(n-2) / 2] \tag{4.5}
\end{equation*}
$$

We note that a similar estimate holds for $k=[(n-2) / 2]+1, \ldots, n-1$. On combining (4.4) and (4.5) it follows that

$$
\begin{equation*}
\left(1-x_{k}^{2}\right)^{3 / 4}\left|P_{n-2}^{\prime}\left(x_{k}\right)\right| \geqslant c_{5} n^{1 / 2}, \quad k=2,3, \ldots, n-1 \tag{4.6}
\end{equation*}
$$

From (4.2) and (4.7) it follows that

$$
\begin{equation*}
\frac{\left(1-x^{2}\right)^{1 / 4}\left|P_{n-2}(x)\right|}{\left(1-x_{k}^{2}\right)^{3 / 4}\left|P_{n-2}^{\prime}\left(x_{k}\right)\right|} \leqslant \frac{c_{6}}{n}, \quad-1 \leqslant x \leqslant 1, \quad n \geqslant 4 \tag{4.7}
\end{equation*}
$$

We also see that

$$
\begin{equation*}
\sin \theta_{k} \leqslant \sin \theta+\sin \theta_{k} \leqslant 2 \sin \left(\theta+\theta_{k}\right) / 2 \tag{4.9}
\end{equation*}
$$

5. Some Lemmas

Throughout this paper we assume x_{j} to be that zero of $P_{n-2}(x)$ which is nearest to x. Using the definition of x_{j} and (4.4) it follows that for some $c_{7}>0$ independent of n and x,

$$
\begin{align*}
& \frac{1}{\left|\sin \left(\theta-\theta_{k}\right) / 2\right|} \leqslant c, n\left(r-\frac{1}{2}\right)^{-1} \\
& k=j \pm r, \quad r=1,2, \ldots, n-3 \tag{5.1}
\end{align*}
$$

We now prove the following lemmas.
Lemma 5.1. For $-1 \leqslant x \leqslant 1$ we have

$$
\begin{array}{r}
|f(1)-f(x)| h_{1}(x) \leqslant c_{8} \omega\left(\sqrt{1-x^{2}} / n\right), \\
|f(-1)-f(x)| h_{n}(x) \leqslant c_{9} \omega\left(\sqrt{1-x^{2}} / n\right) \tag{5.3}
\end{array}
$$

and

$$
\begin{equation*}
I_{1} \equiv \sum_{k=2}^{n-1}\left|f\left(x_{k}\right)-f(x)\right| h_{k}(x) \leqslant c_{10} \sum_{r=1}^{n} \frac{1}{r^{2}} \omega\left(\frac{r \sin \theta}{n}\right) \tag{5.4}
\end{equation*}
$$

where $\omega(\delta) \equiv \omega(f, \delta)$.

Proof. For $x= \pm 1$ (5.2) holds trivially. On using the properties of modulus of continuity of f we have for $-1<x<1$,

$$
\begin{aligned}
|f(1)-f(x)| h_{1}(x) & \leqslant h_{1}(x) \omega(1-x) \\
& \leqslant\left(1+\frac{n \sqrt{1-x}}{\sqrt{1+x}}\right) h_{1}(x) \omega\left(\frac{\sqrt{1-x^{2}}}{n}\right) \\
& =\left(1+\frac{n \sqrt{1-x}}{\sqrt{1+x}}\right) \frac{(1+x)}{2} P_{n-2}^{2}(x) \omega\left(\frac{\sqrt{1-x^{2}}}{n}\right) \\
& \leqslant\left(1+n \sqrt{1-x^{2}}\right) P_{n-2}^{2}(x) \omega\left(\frac{\sqrt{1-x^{2}}}{n}\right) \\
& \leqslant\left(1+n \sqrt{1-x^{2}} P_{n-2}^{2}(x)\right) \omega\left(\frac{\sqrt{1-x^{2}}}{n}\right) .
\end{aligned}
$$

On using (4.2) we obtain (5.2). Proof of (5.3) can be obtained along the same lines. Now we again note that for $x= \pm 1$ (5.4) follows obviously. For $-1<x<1$, we divide the sum I according to the definition of x_{j} as given above. We write

$$
\begin{equation*}
I_{1}=\sum_{k \neq j}\left|f\left(x_{k}\right)-f(x)\right| h_{k}(x)+\left|f\left(x_{j}\right)-f(x)\right| h_{j}(x) \tag{5.5}
\end{equation*}
$$

Again, making use of the properties of modulus of continuity of f we obtain

$$
\begin{align*}
I_{1} \leqslant & \sum_{\substack{k \neq j \\
2 \leqslant k=j \pm r \leqslant n-1}} \omega\left(\left|x-x_{k}\right|\right) h_{k}(x)+h_{j} \omega\left(\left|x-x_{j}\right|\right) \\
& \leqslant \sum_{\substack{k \neq j \\
2 \leqslant k=j \pm r \leqslant n-1}}\left(1+\frac{n\left|x-x_{k}\right|}{r \sin \theta}\right) \omega\left(\frac{r \sin \theta}{n}\right) h_{k}(x) \tag{5.6}\\
& +\left(1+\frac{n\left|x-x_{j}\right|}{\sin \theta}\right) h_{j}(x) \omega\left(\frac{\sin \theta}{n}\right)
\end{align*}
$$

Further we note that

$$
\begin{equation*}
n\left|x-x_{k}\right| h_{k}(x) \leqslant c_{11} \sqrt{1-x^{2}} \tag{5.7}
\end{equation*}
$$

and

$$
\begin{equation*}
n\left|x-x_{k}\right| h_{k}(x) \leqslant c_{12} \sqrt{1-x^{2}} / r, \quad k=j \pm r, \quad k \neq j \tag{5.8}
\end{equation*}
$$

First we shall prove (5.7). From (4.3) and (4.1) it follows that

$$
\begin{equation*}
\sum_{k=2}^{n-1} \frac{1-x^{2}}{1-x_{k}^{2}} l_{k}^{4}(x) \leqslant c_{3}^{2} \sum_{k=2}^{n-1} \frac{1-x^{2}}{1-x_{k}^{2}} l_{k}^{2}(x) \leqslant c_{3}^{2} \tag{5.9}
\end{equation*}
$$

Hence for $-1 \leqslant x \leqslant 1$,

$$
\begin{equation*}
\left[\left(1-x^{2}\right)^{1 / 4} /\left(1-x_{k}^{2}\right)^{1 / 4}\right]\left|l_{k}(x)\right| \leqslant c_{3}^{1 / 2}, \quad k=2,3, \ldots, n-1 \tag{5.10}
\end{equation*}
$$

Thus on using (4.7) and (5.10) we obtain

$$
\begin{aligned}
n\left|x-x_{k}\right| h_{k}(x) & =n\left(1-x^{2}\right)^{1 / 2}\left[\frac{\left(1-x^{2}\right)^{1 / 4}\left|l_{k}(x)\right|}{\left(1-x_{k}^{2}\right)^{1 / 4}}\right]\left[\frac{\left(1-x^{2}\right)^{1 / 4}\left|P_{n-2}(x)\right|}{\left(1-x_{k}^{2}\right)^{3 / 4}\left|P_{n-2}^{\prime}\left(x_{k}\right)\right|}\right] \\
& \leqslant n\left(1-x^{2}\right)^{1 / 2} c_{3}^{1 / 2} c_{6} n^{-1} \\
& \leqslant c_{11}\left(1-x^{2}\right)^{1 / 2} .
\end{aligned}
$$

This completes the proof of (5.7) for $-1 \leqslant x \leqslant 1$ and $k=2,3, \ldots, n-1$. In order to prove (5.8) we use (5.1) and (4.8) and observe that for $k \neq j$,

$$
\begin{align*}
& \frac{\left(1-x^{2}\right)^{1 / 4}\left|l_{k}(x)\right|}{\left(1-x_{k}^{2}\right)^{1 / 4}} \\
& \quad=\frac{\left(1-x^{2}\right)^{1 / 4}\left|P_{n-2}(x)\right|}{\left(1-x_{k}^{2}\right)^{3 / 4}\left|P_{n-2}^{\prime}\left(x_{k}\right)\right|}\left[\frac{\sin \theta_{k}}{2\left|\sin \frac{\theta+\theta_{k}}{2}\right|\left|\sin \frac{\theta-\theta_{k}}{2}\right|}\right] \\
& \quad \leqslant c_{6} n^{-1} c_{7} n\left(r-\frac{1}{2}\right)^{-1} \\
& \leqslant c_{13} / r, \quad k=j \pm r, \quad k \neq j . \tag{5.11}
\end{align*}
$$

Now we can see that (5.8) follows from (5.11) and (4.7) as follows:

$$
\begin{aligned}
n\left|x-x_{k}\right| h_{k}(x) & =\left(1-x^{2}\right)^{1 / 2}\left[\frac{\left(1-x^{2}\right)^{1 / 4}\left|l_{k}(x)\right|}{\left(1-x_{k}^{2}\right)^{1 / 4}}\right]\left[\frac{n\left(1-x^{2}\right)^{1 / 4}\left|P_{n-2}(x)\right|}{\left(1-x_{k}^{2}\right)^{3 / 4}\left|P_{n-2}^{\prime}\left(x_{k}\right)\right|}\right] \\
& \leqslant c_{12} \frac{\sqrt{1-x^{2}}}{r}, \quad k=j \pm r, \quad k \neq j .
\end{aligned}
$$

From an earlier result of [8, Lemma 2, p. 277] (also [9, p. 128]),

$$
\begin{equation*}
h_{k}(x) \leqslant c_{14} / r^{2}, \quad k=j \pm r, \quad-1 \leqslant x \leqslant 1 . \tag{5.12}
\end{equation*}
$$

Thus from (5.6), (5.7), (5.8) and (5.12) we immediately obtain

$$
I_{1} \leqslant c_{10} \sum_{r=1}^{n} \frac{1}{r^{2}} \omega\left(\frac{r \sin \theta}{n}\right)
$$

This completes the proof of Lemma 5.1.
For the proof of the inequality (3.2) we need the following lemma.

Lemma 5.2. For $-1 \leqslant x \leqslant 1$ we have

$$
\begin{equation*}
I_{2}=\sum_{k=2}^{n-1} h_{k}(x) \omega_{2}\left(\frac{\sqrt{1-x_{k}^{2}}}{n}\right) \leqslant c_{15} \omega_{2}\left(\frac{\sqrt{1-x^{2}}}{n}\right) \tag{5.13}
\end{equation*}
$$

Proof. Due to the properties of modulus of continuity of order 2 of $f(x)$ and (4.1) it follows that for $-1<x<1$,

$$
\begin{aligned}
I_{2} & \leqslant \sum_{k=2}^{n-1} h_{k}(x)\left(1+\frac{\sqrt{1-x_{k}^{2}}}{\sqrt{1-x^{2}}}\right) \omega_{2}\left(\frac{\sqrt{1-x^{2}}}{n}\right) \\
& \leqslant \omega_{2}\left(\frac{\sqrt{1-x^{2}}}{n}\right)\left\{1+\sum_{k=2}^{n-1} \frac{\sqrt{1-x^{2}}}{\sqrt{1-x_{k}^{2}}} l_{k}^{2}(x)\right\}
\end{aligned}
$$

Now on using (5.10) and (5.11) we obtain

$$
\begin{align*}
I_{2} & \leqslant \omega_{2}\left(\frac{\sqrt{1-x^{2}}}{n}\right)\left\{1+c_{1}+c_{11}^{2} \sum_{r=1}^{n} \frac{1}{r^{2}}\right\} \tag{5.14}\\
& \leqslant c_{15} \omega_{2}\left(\frac{\sqrt{1-x^{2}}}{n}\right)
\end{align*}
$$

For $x= \pm 1$ (5.13) is trivially satisfied. Hence from (5.14) Lemma 5.2 follows.

6. The Proof of Theorem 3.1.

From (4.1) and (2.6) if follows that

$$
\begin{align*}
A_{n}[f, x]-f(x)= & {[f(1)-f(x)] h_{1}(x)+[f(-1)-f(x)] h_{n}(x) } \\
& +\sum_{k=2}^{n-1}\left[f\left(x_{k}\right)-f(x)\right] h_{k}(x) \tag{6.1}
\end{align*}
$$

On using Lemma 5.1 we at once obtain

$$
\left|A_{n}[f, x]-f(x)\right| \leqslant\left(c_{8}+c_{9}\right) \omega\left(\frac{\sqrt{1-x^{2}}}{n}\right)+c_{10} \sum_{r=1}^{n} \frac{1}{r^{2}} \omega\left(\frac{r \sin \theta}{n}\right)
$$

Now following the same lines as in [10] we get

$$
\sum_{r=1}^{n} \frac{1}{r^{2}} \omega\left(\frac{r \sin \theta}{n}\right) \leqslant \frac{c_{16}}{n} \sum_{i=1}^{n} \omega\left(\frac{\sqrt{1-x^{2}}}{i}\right)
$$

Therefore, we obtain

$$
\left|A_{n}[f, x]-f(x)\right| \leqslant \frac{c_{17}}{n} \sum_{i=1}^{n} \omega\left(\frac{\sqrt{1-x^{2}}}{i}\right) .
$$

This completes the proof of inequality (3.1).
Next, we shall prove (3.2). It is well known that if $f(x)$ is a polynomial of degree $\leqslant 2 n-3$ (with $\mu_{n}^{\prime}\left(x_{k}\right)=f^{\prime}\left(x_{k}\right)$) then

$$
B_{n}[f, x] \equiv f(x)
$$

Since $\mu_{n}(x)$ is a polynomial of degree $\leqslant n$ we can write

$$
\begin{equation*}
\mu_{n}(x)=\sum_{k=1}^{n} \mu_{n}\left(x_{k}\right) h_{k}(x)+\sum_{k=2}^{n-1} \mu_{n}^{\prime}\left(x_{k}\right) \sigma_{k}(x) \tag{6.2}
\end{equation*}
$$

Now from (2.7), (2.8), (5.13) and (6.2) it follows that

$$
\begin{aligned}
&\left.\left|B_{n}\right| f, x\right]-f(x) \mid \\
& \leqslant\left|B_{n}[f, x]-\mu_{n}(x)\right|+\left|\mu_{n}(x)-f(x)\right| \\
& \leqslant \sum_{k=1}^{n}\left|f\left(x_{k}\right)-\mu_{n}\left(x_{k}\right)\right| h_{k}(x)+\left|\mu_{n}(x)-f(x)\right| \\
& \leqslant c_{0} \sum_{k=2}^{n-1} \omega_{2}\left(\sqrt{1-x_{k}^{2}} / n\right) h_{k}(x)+c_{0} \omega_{2}\left(\sqrt{1-x^{2}} / n\right) \\
& \leqslant\left(c_{15}+1\right) c_{0} \omega_{2}\left(\sqrt{1-x^{2}} / n\right) \\
& \leqslant c_{2} \omega_{2}\left(\sqrt{1-x^{2}} / n\right)
\end{aligned}
$$

which completes the proof of Theorem 3.1.

References

1. S. N. Bernstein, Sur les polynömes orthogonaux relatifs à un segment fini, J. Math. 10 (1931), 219-286.
2. R. Bojanic, A note on the precision of interpolation by Hermite-Fejér polynomials, in "Proceedings of the Conference on Constructive theory of functions, Budapest," pp. 69-76, 1972.
3. R. A. De Vore, Degree of approximation, in "Approximation Theory II" (G. G. Lorentz, C. K. Chui, and L. L. Schumaker, Eds.), pp. 117-161, Academic Press, New York, 1979.
4. E. Egerváry and P. Turán, Notes on interpolation, V, Acta Math. Acad. Sci. Hung. 9 (1958), 259-267.
5. P. Erdös, On the maximum of the fundamental functions of the ultraspherical polynomials, Ann. of Math. 45 (1944), 335-339.
6. L. Fejér, Über Interpolation, Nachr. Gesell. Gött. (1916), 66-91.
7. L, Fejér, Beste Approximierbarkeit einer gegebenen Function durch ein Polynom gegebenen Grades, Math. Nachr. (1950), 328-342.
8. T. M. Mills and A. K. Varma, On a theorem of Egervary and P. Turán on the stability of interpolation, J. Approximation Theory 11 (1974), 275-282.
9. J. Prasad and R. B. Saxena, Degree of convergence of quasi Hermite-Fejér interpolation, Publ. Inst. Math. (N.S.) 19, No. 33 (1975), 123-130.
10. R. B. SaxEnA, A note on the rate of convergence of Hermite-Fejer interpolation polynomials, Can. Math. Bull. 17, No. 2 (1974), 299-301.
11. J. Szabadös, On the convergence of Hermite-Fejér interpolation based on the roots of the Legendre polynomials, Acta Sci. Math. (Szeged) 34 (1973), 367-370.
12. P. Szász, On quasi-Hermite-Fejér interpolation, Acta Math. Acad. Sci. Hung. 10 (1959), 413-439.
13. A. K. Varma and J. Prasad, A contribution to the problem of L. Fejer on Hermite-Fejer interpolation, J. Approximation Theory 28 (1980), 185-196.
14. P. Vértesi, Estimates for some interpolatory processes, Acta Math. Acad. Sci. Hung. 1-2 (1976), 109-119.
